這是個(gè)漂亮的花招。為了找出還有沒有更多的東西,我們需要曝光希格斯場,方法就是讓它產(chǎn)生漣漪,而那些漣漪會(huì)被我們看成為希格斯玻色子。理論和實(shí)驗(yàn)的發(fā)展讓我們對所需的能量有了一個(gè)很好的估計(jì):希格斯玻色子的質(zhì)量必定介于大約100 GeV到400 GeV之間。我們需要找一個(gè)相當(dāng)巨大的機(jī)器才行。
新粒子現(xiàn)身
希格斯玻色子是短命的粒子,幾乎會(huì)在一瞬間就衰變成其他粒子。為了推斷出它的存在,我們必須測量這些衰變產(chǎn)物,尋找它們是從一個(gè)希格斯粒子衰變而來的證據(jù)。
幸運(yùn)的是,標(biāo)準(zhǔn)模型預(yù)言出了我們需要知道的、有關(guān)希格斯玻色子的一切——除了它確切的質(zhì)量。對于每一個(gè)可能的質(zhì)量,我們能夠預(yù)言大型強(qiáng)子對撞機(jī)(LHC)中能夠產(chǎn)生的希格斯粒子的數(shù)量,并且預(yù)言它們會(huì)衰變成什么。
例如,希格斯粒子有時(shí)應(yīng)該會(huì)衰變成一對高能光子。由于粒子衰變時(shí)動(dòng)量守恒,這兩個(gè)光子的動(dòng)量就可以換算為產(chǎn)生這兩個(gè)光子的粒子的質(zhì)量。許多現(xiàn)象都會(huì)產(chǎn)生一對光子,但如果我們專注于那些看上去像是希格斯玻色子產(chǎn)生的光子,然后把它們的動(dòng)量繪制在一張圖表上的話,在對應(yīng)于特定質(zhì)量的動(dòng)量數(shù)值上就會(huì)出現(xiàn)一個(gè)“鼓包”——某種未知的粒子就會(huì)以這樣的形式顯現(xiàn)出來。ATLAS和CMS都在質(zhì)量相當(dāng)于大約125 GeV的位置上看到了這樣的鼓包。2012年7月4日,他們向全世界宣布了這一結(jié)果。
這并不是唯一的證據(jù)。希格斯玻色子還應(yīng)該會(huì)衰變成兩個(gè)Z玻色子,然后再進(jìn)一步衰變成兩個(gè)輕子。把這些輕子的動(dòng)量加在一起,在光子數(shù)據(jù)中相當(dāng)于同樣質(zhì)量的位置上,也產(chǎn)生出了一個(gè)峰值。W玻色子也提供了它們的證據(jù)。這些粒子衰變成為中微子,后者還沒有被檢測到,因此在這個(gè)實(shí)驗(yàn)中還沒有出現(xiàn)明確的質(zhì)量鼓包。相反,我們只看到了更多的W玻色子衰變,數(shù)量比希格斯玻色子不存在的情況要多。
總而言之,這些證據(jù)剛好足夠達(dá)到宣稱發(fā)現(xiàn)的“5σ”黃金標(biāo)準(zhǔn),表明這一發(fā)現(xiàn)大概只有1/3500000的可能性是隨機(jī)統(tǒng)計(jì)噪聲所造成的假象。在那之后,對于那里真的存在一個(gè)粒子,我們的確定性還在進(jìn)一步增長。不過,我們還必須進(jìn)行更多的實(shí)驗(yàn),才能確定它是不是我們所認(rèn)為的希格斯玻色子。
ATLAS和CMS
當(dāng)兩個(gè)質(zhì)子在大型強(qiáng)子對撞機(jī)的ATLAS和CMS探測器的核心對撞時(shí),它們會(huì)分解成構(gòu)成質(zhì)子的夸克和膠子,進(jìn)而衰變成朝各個(gè)方向四散奔逃的大量粒子。這些探測器的任務(wù)就是測量或者分辨這些碰撞產(chǎn)物。
每個(gè)探測器都由一系列同心環(huán)構(gòu)成。距離碰撞點(diǎn)最近的同心環(huán)由半導(dǎo)體構(gòu)成。如果帶電粒子穿透這層半導(dǎo)體,被松散約束在這種材料的原子之中的電子就會(huì)被釋放出來,形成特定的電流,讓科學(xué)家能夠精確測量這些粒子的穿行路線。探測器周邊的磁場會(huì)彎曲這些帶電粒子的路線,彎曲的程度表明了這些粒子的動(dòng)量。
再向外一個(gè)同心環(huán),則由填充著液態(tài)氬(ATLAS)或者鎢酸鉛晶體(CMS)的探測器構(gòu)成。與這些探測器中密集排列的原子發(fā)生的碰撞,會(huì)讓大多數(shù)粒子停滯在其中,這些粒子減速時(shí)發(fā)出的光子可以用來測量那些粒子的能量,從而鑒別它們的身份。
電子較重的“表親”,也就是μ子,不會(huì)在這些探測器中止步,但更外一層同心環(huán)中的專用探測器會(huì)鑒別和測量它們。對于更難以捉摸的中微子,則完全沒有進(jìn)行測量。它們的存在是通過統(tǒng)計(jì)碰撞中產(chǎn)生的所有其他粒子的動(dòng)量而推斷出來的。
每次都有許多質(zhì)子-質(zhì)子同時(shí)發(fā)生碰撞,這些碰撞產(chǎn)生的粒子接近光速向外飛出,而需要仔細(xì)研究的碰撞必須盡快篩選出來,因?yàn)椴坏?0納秒之后,又會(huì)有另外兩束質(zhì)子在探測器的核心發(fā)生對撞。大型強(qiáng)子對撞機(jī)目前正在升級,升級完成之后,這個(gè)時(shí)間會(huì)縮短到25納秒。如此大量的數(shù)據(jù),會(huì)傳送到世界各地被連接在一起的計(jì)算機(jī)中,經(jīng)由大量計(jì)算來鑒別希格斯玻色子是否存在。
大型強(qiáng)子對撞機(jī)
愛因斯坦提出的最著名的一個(gè)方程,E = mc2,將能量和質(zhì)量聯(lián)系在了一起。后果之一便是,當(dāng)大質(zhì)量粒子高速對撞在一起時(shí),釋放出來的能量能夠用來創(chuàng)造出其他的大質(zhì)量粒子。瑞士日內(nèi)瓦附近CERN的大型強(qiáng)子對撞機(jī),已經(jīng)花了兩年時(shí)間,將能量高達(dá)4 TeV的質(zhì)子對撞在一起。將攜帶這么多額外能量的兩個(gè)質(zhì)子對撞在一起,理論上,你能夠創(chuàng)造出8000多個(gè)質(zhì)子。
LHC位于一條27千米長的隧道之內(nèi)。通常,它被描述為一個(gè)環(huán),但實(shí)際上,它更像是一個(gè)邊角有些圓的八邊形。在直線段,強(qiáng)大的電磁場給兩束相對運(yùn)行的質(zhì)子束注入能量,每次經(jīng)過都會(huì)給它們加速。等到對撞時(shí),它們的速度已經(jīng)達(dá)到了光速的99.999999991%。
要弄彎如此高速運(yùn)動(dòng)的粒子束,你需要非常強(qiáng)大的磁鐵。電阻帶來的任何能量損失,都會(huì)成為運(yùn)行時(shí)的短板,因此磁鐵必須由超冷的超導(dǎo)材料制成。即使如此,它們也只能把粒子束弄彎一點(diǎn)點(diǎn)——這就是LHC被建造得如此巨大的原因所在。
在八邊形的4個(gè)邊上,更多磁鐵將質(zhì)子束約束到還不到人頭發(fā)絲粗細(xì),然后讓它們迎頭相撞。4個(gè)大型探測器:ATLAS、CMS、LHCb和ALICE,會(huì)在各個(gè)碰撞點(diǎn)上記錄碰撞結(jié)果。ATLAS和CMS是全功能探測器,設(shè)計(jì)用來測量到底撞出了什么東西——包括搜尋轉(zhuǎn)瞬即逝的希格斯玻色子。
尚未回答的問題
標(biāo)準(zhǔn)模型是一個(gè)巨大的成功。然而,就算有了希格斯玻色子為它加冕,它也仍然是不完整的。引力在標(biāo)準(zhǔn)模型中明顯缺席,而且它也無法解釋暗物質(zhì)——這種東西只能通過它的引力作用在天文觀測中被察覺到。接下來還有一個(gè)謎題:為什么物質(zhì)會(huì)比暗物質(zhì)多這么多,因?yàn)闃?biāo)準(zhǔn)模型預(yù)言,它們的數(shù)量應(yīng)該差不多是相等的。
粒子物理學(xué)的下一步,必須要解釋這些謎題。比如,我們有可能在大型強(qiáng)子對撞機(jī)的質(zhì)子碰撞中產(chǎn)生出暗物質(zhì)粒子,或者在深埋于礦井和坑道之中的幾個(gè)實(shí)驗(yàn)裝置中避開宇宙線的干擾而搜尋暗物質(zhì)粒子的蹤跡。另一種途徑是,我們或許可以觀察空間中兩個(gè)暗物質(zhì)粒子湮滅而產(chǎn)生的高能粒子來間接地觀察暗物質(zhì),比如正在國際空間站上展開實(shí)驗(yàn)的阿爾法磁譜儀(AMS)。
至于反物質(zhì),CERN的實(shí)驗(yàn)或許可以制造并且存貯它們,我們甚至在正電子發(fā)射斷層掃描儀(PET)中利用它們來幫助醫(yī)生診斷癌癥。LHCb實(shí)驗(yàn)裝置會(huì)檢測質(zhì)子-質(zhì)子碰撞中產(chǎn)生的短命粒子的衰變,尋找反物質(zhì)粒子何以如此稀少的證據(jù)。
中微子也可能會(huì)提供一些幫助。這些幽靈一般的粒子在空間中穿行時(shí),會(huì)在3種中微子之間相互變換。在中國和韓國之間測量不同中微子混合程度的實(shí)驗(yàn)暗示,正反物質(zhì)的失衡可能也存在于中微子當(dāng)中。自然界中觀察到的正反物質(zhì)差異,和標(biāo)準(zhǔn)模型的預(yù)言之間存在的巨大鴻溝,或許可以借此得以彌補(bǔ)。
更古怪的是,中微子的質(zhì)量甚至有可能根本不是通過希格斯機(jī)制獲得的。因?yàn)橹形⒆硬粩y帶任何的“荷”,它自己就是自己的反物質(zhì)。果真如此的話,它的質(zhì)量可能來自于它與自身的相互作用,而并非來自于它同希格斯場的相互作用。靈敏的地下實(shí)驗(yàn)裝置正在尋找極其罕見的核衰變,那些衰變或許會(huì)告訴我們答案。
符合標(biāo)準(zhǔn)模型嗎?
如果承認(rèn)已經(jīng)誘捕到的就是希格斯玻色子,我們就沒有任何轉(zhuǎn)還的余地了——因?yàn)闃?biāo)準(zhǔn)模型已經(jīng)預(yù)言了關(guān)于它的所有一切。
盡管我們相當(dāng)確定,新發(fā)現(xiàn)的粒子正如希格斯粒子那樣會(huì)衰變成攜帶作用力的玻色子,但我們還不太確定它會(huì)不會(huì)衰變成構(gòu)成物質(zhì)的費(fèi)米子。在更為罕見(或者說隱藏更深)的衰變中,希格斯粒子會(huì)衰變成底夸克、τ子,甚至μ子。升級之后的大型強(qiáng)子對撞機(jī)應(yīng)該能夠精確地測量這些衰變。
標(biāo)準(zhǔn)模型還對希格斯粒子應(yīng)該如何與頂夸克發(fā)生相互作用給出了明確的預(yù)言。(希格斯粒子無法衰變成頂夸克,因?yàn)轫斂淇颂亓?。)任何不同于預(yù)言的偏差,都將為新物理學(xué)提供一絲跡象。
最讓人捉急的問題在于這個(gè)粒子的質(zhì)量。在標(biāo)準(zhǔn)模型中,希格斯粒子與它自身及周圍粒子的相互作用似乎暗示,它應(yīng)該擁有巨大的質(zhì)量。但大型強(qiáng)子對撞機(jī)中發(fā)現(xiàn)的這個(gè)粒子,質(zhì)量要小得多。
對標(biāo)準(zhǔn)模型加以“微調(diào)”,讓兩個(gè)巨大的數(shù)字幾乎(但又不完全)相互抵消,應(yīng)該能夠解決這個(gè)問題,使得希格斯粒子擁有較小的質(zhì)量。但許多人不喜歡這種修正,認(rèn)為這樣的修正讓理論變得有點(diǎn)不自然了。
一個(gè)受人歡迎的提議能夠解決這個(gè)問題,那就是超對稱。這種理論通過費(fèi)米子和玻色子之間的一種對稱,擴(kuò)展了標(biāo)準(zhǔn)模型。它預(yù)言了一大批新粒子,每一個(gè)玻色子都有一個(gè)費(fèi)米子與它對應(yīng),反之亦然。這些新粒子之間的相互作用,能夠自然而然地抵消使得希格斯粒子質(zhì)量增大的那些因素。
已有0人發(fā)表了評論